新浪微博
微信互动

原核表达经验谈

     人们合成与生物相关的物质是从尿素开始的,1828年,德国化学家维勒人工合成了存在于生物体的这种有机物。在1960年我国科学家采用化学方法首次成功地合成了具有生物活性的蛋白质――胰岛素。随着内切酶的发现和基因工程技术的发展,人们发现用各种不同的载体在原核、真核系统中进行蛋白表达更为行之有效。而这其中大肠杆菌表达系统发展得最为迅速、成熟。原核表达具有操作方便、快捷,需时较短,表达量大,适合工业化生产等优点。虽然也有缺少糖基化和表达后加工等问题,当有了其它多种表达系统后,原核系统仍是我们合成外源蛋白的首选。 


     在网上看到有人把原核表达技术分成四个等级:初次尝试扫盲、乱棍打枣入门、系统优化中级和自成一体高手,觉得十分有意思。但是根据笔者自己的经验以及耳闻目睹的一些经历告诉我:做表达?那是谋事在人,成事在天。有时候你把克隆做出来了,双酶切鉴定没问题,测序没问题,可是就是看不到表达带。原因当然可以分析,实验也是可以改进,但是窜改一下戈尔泰的话:“成功的实验都是一样的,失败的实验各有各的不幸。”在实验遇到瓶颈的时候要如何进行分析,找到问题的症结是我们的实验关键所在。在准备进行原核表达的时候需要考虑的因素很多,市面上可供选择的载体、菌株也很多,要如何进行正确的选择,找到适合自己的载体是十分重要的。所以,现在要对目前常用的一些载体进行介绍,让我们对其相关产品及其表达原理进行了解,以方便实验设计。


     首先来一些大肠杆菌表达的基本概念:一个完整的表达系统通常包括配套的表达载体和表达菌株,如果是特殊的诱导表达还包括诱导剂,如果是融合表达还包括纯化系统或者Tag检测等等。选择表达系统通常要根据实验目的来考虑,比如表达量高低,目标蛋白的活性,表达产物的纯化方法等等。主要归结在表达载体的选择上。

 

     表达载体 :我们关心的质粒上的元件包括启动子,多克隆位点,终止密码,融合Tag(如果有的话),复制子,筛选标记/报告基因等。通常,载体很贵,我们可以通过实验室之间交换得到免费的载体。但是要小心,辗转多个实验室和多个实验室成员之手的载体是否保持原来的遗传背景?MCS是否还是原来那个MCS?是我们要特别注意的。

 

     复制子:通常表达载体都会选用高拷贝的复制子。pSC101类质粒是严谨方式复制,拷贝数低,pCoE1,pMBI(pUC)类的复制子的拷贝数高达500以上,是表达载体常用的。通常情况下质粒拷贝数和表达量是非线性的正相关,当然也不是越多越好,超过细胞的承受范围反而会损害细胞的生长。如果碰巧需要2个质粒共转化,就要考虑复制元是否相容的问题。
筛选标记和报告基因 :氨苄青霉素抗性是最常见的筛选标记,卡那霉素或者是新霉素次之,通常是另一个载体的筛选标记用。四环素,红霉素和氯霉素等已经日渐式微。抗性基因的选择要注意是否会对研究对象产生干扰,比如代谢研究中要留意抗性基因编码的酶是否和代谢物相互作用。在表达筛选中要注意的问题应该就是LB倒板前加抗生素的温度,温度过高容易导致抗生素失效。今天耐青霉素的超级细菌泛滥,不知道是否有我们实验人员的功劳呢?大家“随便倒掉”已经获得氨苄抗性的大肠杆菌之前有没有经过煮沸或者消毒等处理呢?从以前的一针50万单位到现在100多万个单位,青霉素剂量似乎越来越大了。

 

     对于做表达来说,如果不是要研究启动子的强弱,通常比较少关心或者用到报告基因吧。绿色荧光蛋白是最常用的报告基因了(注意选择适用原核表达版本的GFP),其他还有半乳糖苷酶啊,荧光素酶啊等等。一些融合表达Tag也有报告基因的功能。

 

     启动子、终止子和核糖体结合位点


     启动子: 启动子的强弱是对表达量有决定性影响的因素之一。从转录模式上看有组成型表达和诱导调控型表达。lac和Tac,PL和PR,T7是最常用的启动子

 

     组成型表达 :表达载体的启动子为组成型启动子,也就是一直努力不停表达目的蛋白的启动子,如pMAL系统。持续性表达通常表达量比较高,成本低,但是不适合表达一些对宿主细菌生长有害的蛋白。因为过量或者有害的表达产物会影响细菌的生长,反过来影响表达量的积累。

 

     诱导调控型表达 :表达载体采用诱导型启动子,只有在诱导剂存在的条件下才能表达目的产物。这种方法有助于避免菌体生长前期高表达对菌体生长的影响,又可减少菌体蛋白酶对目标产物的降解。特别适合解决有毒蛋白的表达。另外也有启动子是组成型的,但是启动子所依赖的转录酶是诱导表达的,也属于诱导表达系统。


     融合表达 :表达载体的多克隆位点上有一段融合表达标签(Tag),表达产物为融合蛋白(有分N端或者C端融合表达),方便后继的纯化步骤或者检测。对于特别小的分子建议用较大的Tag(如GST)以获得稳定表达;而一般的基因多选择小Tag以减少对目的蛋白的影响。His-Tag是最广泛采用的Tag。


     分泌表达 :在起始密码和目的基因之间加入信号肽,可以引导目的蛋白穿越细胞膜,避免表达产物在细胞内的过度累积而影响细胞生长,或者形成包含体,而且表达产物是可溶的活性状态不需要复性。通常这种分泌只是分泌到细胞膜和细胞壁之间的周质空间。

 

     可溶性表达 :大肠杆菌表达效率很高,特别是强启动子,目的蛋白来不及折叠而形成不溶的包含体颗粒,包含体容易纯化但是复性效率不高。分泌表达可以得到可溶的产物,也有部分融合Tag有助于提高产物的可溶性,比如Thio,pMAL系统。

 

     转录终止子 对外源基因在大肠杆菌中的高效表达有重要作用――控制转录的RNA长度提高稳定性,避免质粒上异常表达导致质粒稳定性下降。放在启动子上游的转录终止子还可以防止其他启动子的通读,降低本底。转录终止子有两类,Rho因子作用下使转录终止mRNA和根据模版上的对称序列形成发夹结构而终止mRNA。常见的是rrnB  rRNA操纵子的T1T2串连转录终止子。

 

     核糖体结合位点 :启动子下游从转录起始位点开始延伸的一段碱基序列,其中能与rRNA16S亚基3'端互补的SD序列对形成翻译起始复合物是必需的,多数载体启动子下游都有SD序列,也有些载体没有,适合自带SD序列的基因表达,要留意。

 

     表达菌株 :我们往往最容易忽视的一点。不同的表达载体对应有不同的表达菌株,一些特别设计的菌株更有助于解决一些表达难题。同样的,交换获得的免费菌株,要小心其遗传背景是否已经发生改变?

 

     注:以上各种特性是可以相互组合的,不是排他的!

 

     几个常用的启动子和诱导调控表达系统

 

     最早应用于的表达系统是Lac乳糖操纵子,由 启动子Plac + 操纵基因lacO + 结构基因组成。其转录受CAP正调控和lacI负调控。lacUV5突变能够在没有CAP的存在下更有效地起始转录,该启动子在转录水平上只受lacI的调控,因而随后得到了更广泛采用。lacI产物是一种阻遏蛋白,能结合在操纵基因lacO 上从而阻遏转录起始。乳糖的类似物IPTG可以和lacI产物结合,使其构象改变离开lacO,从而激活转录。这种可诱导的转录调控成为了大肠杆菌表达系统载体构建的常用元件。tac启动子是trp启动子和lacUV5的拼接杂合启动子,且转录水平更高,比lacUV5更优越。trc启动子是trp启动子和lac启动子的拼合启动子,同样具有比trp更高的转录效率和受lacI阻遏蛋白调控的强启动子特性。在常规的大肠杆菌中,lacI阻遏蛋白表达量不高,仅能满足细胞自身的lac操纵子,无法应付多拷贝的质粒的需求,导致非诱导条件下较高的本底表达,为了让表达系统严谨调控产物表达,能过量表达lacI阻遏蛋白的lac  Iq   突变菌株常被选为Lac/Tac/trc表达系统的表达菌株。现在的Lac/Tac/trc载体上通常还带有lac  Iq   基因,以表达更多lacI阻遏蛋白实现严谨的诱导调控。IPTG广泛用于诱导表达系统,但是IPTG有一定毒性,有人认为在制备医疗目的的重组蛋白并不合适,因而也有用乳糖代替IPTG作为诱导物的研究。另外一种研究方向是用lacI的温度敏感突变体,30度下抑制转录,42度开发。热诱导不用添加外来的诱导物,成本低,但是由于发酵过程中加热升温比较慢而影响诱导效果,而且热诱导本身会导致大肠杆菌的热休克蛋白激活,一些蛋白酶会影响产物稳定。

 

     以 λ噬菌体再起转录启动子PL   、  P R     构建的载体也为大家所熟悉。这两个强启动子受控于λ噬菌体  cI基因产物。cI基因的温度敏感突变体cI857(ts)常常被用于调控PL   、 P R    启动子的转录。同样也是30度下阻遏启动子转录,42度下解除抑制开发转录。同样的,PL   、 P R    表达载体需要携带cI857(ts)菌株作为表达载体,现在更常见的做法是在载体上携带cI857(ts)基因,所以可以有更大的宿主选择范围。另外一种思路是通过严谨调控cI产物来间接调控PL   、 P R    启动子的转录。比如Invitrogen的PL   表达系统,就是将受trp启动子严谨调控的cI基因溶源化到宿主菌染色体上,通过加入酪氨酸诱导抑制trp启动子,抑制cI基因的表达,从而解除强大的PL    启动子的抑制。

 

     T7启动子是当今大肠杆菌表达系统的主流,这个功能强大兼专一性高的启动子经过巧妙的设计而成为原核表达的首选,尤其以Novagen公司的pET系统为杰出代表。强大的T7启动子完全专一受控于T7 RNA 聚合酶,而高活性的T7 RNA 聚合酶合成mRNA的速度比大肠杆菌RNA聚合酶快5倍――当二者同时存在时,宿主本身基因的转录竞争不过T7表达系统,几乎所有的细胞资源都用于表达目的蛋白;诱导表达后仅几个小时目的蛋白通常可以占到细胞总蛋白的50%以上。由于大肠杆菌本身不含T7 RNA 聚合酶,需要将外源的T7 RNA 聚合酶引入宿主菌,因而T7 RNA 聚合酶的调控模式就决定了T7系统的调控模式――非诱导条件下,可以使目的基因完全处于沉默状态而不转录,从而避免目的基因毒性对宿主细胞以及质粒稳定性的影响;通过控制诱导条件控制T7 RNA 聚合酶的量,就可以控制产物表达量,某些情况下可以提高产物的可溶性部分。有何高招?

 

     有几种方案可用于调控T7 RNA 聚合酶的合成,从而调控T7表达系统。


     1.噬菌体DE3是lambda噬菌体的衍生株,含有lacI抑制基因和位于lacUV5启动子下的T7 RNA 聚合酶基因。DE3溶源化的菌株如BL21(DE3)就是最常用的表达菌株,构建好的表达载体可以直接转入表达菌株中,诱导调控方式和lac一样都是IPTG诱导。

 

     2.另一种策略是用不含T7 RNA聚合酶的宿主菌克隆目的基因,即可完全避免因目的蛋白对宿主细胞的潜在毒性而造成的质粒不稳定。然后用λCE6噬菌体侵染宿主细胞――CE6是lambda噬菌体含温度敏感突变(cI857ts)和pL/pR启动子控制T7 RNA 聚合酶的衍生株,在热诱导条件下可以激活T7 RNA 聚合酶的合成。

 

     此了噬菌体之外,还可以通过共转化质粒提供T7 RNA 聚合酶。比如有人用受溶氧浓度控制的启动子调控T7 RNA 聚合酶合成,据说这比较适合工业化发酵的条件控制。

 

     由于T7 RNA 聚合酶的调控方式仍有可能有痕量的本底表达,控制基础表达的手段之一是培养基外加葡萄糖,有助于控制本底表达水平。2.是采用带有T7lac 启动子的载体――在紧邻T7 启动子的下游有一段lacI操纵子序列编码表达lac 阻遏蛋白(lacI),lac 阻遏蛋白可以作用于宿主染色体上T7 RNA 聚合酶前的lacUV5 启动子并抑制其表达,也作用于载体T7 lac 启动子,以阻断任何T7 RNA聚合酶导致的目的基因转录。pLacI工转化也是同样的原理。

 

     如果这还不够,更为严谨调控手段还有――在宿主菌中表达另一个可以结合并抑制T7 RNA 聚合酶的基因――T7融菌酶,降低本底。常用的带溶菌酶质粒有pLysS和pLysE,相容的ori都不会影响后继的表达质粒转化,前者表达的溶菌酶的水平要比后者低得多,对细胞生长影响小,而pLysE会明显降低宿主菌的生长水平,容易出现过度调节,增加蛋白表达的滞后时间,从而降低表达水平。

 

     通过几种不同方法来巧妙调控T7聚合酶合成,T7启动子发展出了史上功能最强大,最丰富的表达系统。

 

 


上一篇:实验室离心机离心管分类
下一篇:重组大肠杆菌目的蛋白的表达蛋白电泳
分享到: